
Chapter 1

Perspective Geometry

When we move our bodies, heads, and eyes in space (often referred to as R3), the
appearance of our environment changes in predictable ways. When one moves closer
to an object it appears larger, turning one’s head to the right moves an object to the
left, and so on. These changes comprise the study of projective geometry. Quantifying
the way that objects look as one moves through space is the first step in simulating
the exploration of a visual environment.

1.1 Shifting Perspective

There are many different but equivalent ways to model perspective transformations;
in the literature, no two researchers approach the problem in exactly the same way.
My first approach is geometrically motivated rather than algebraic, but since this is
a study of visual experience, this seems appropriate. The second algebraic derivation
follows Blinn’s Lastly, I’ll compare the two results to check that there were no mishaps
along the way.

Here is the problem. Imagine for a moment that you are an infinitesimal eyeball
floating around in R3. At first, you are at (0,0,1) staring intently at the origin with
some interest point I = (1,1,0) in your periphery. To you, this point appears to be
just where it should be—at (1,1). But later, you decide to float up to the point (2,2,2)
while continuing to look at the origin. Where does I appear to be now?

1.1.1 The Geometric Perspective

Let’s solve the problem in general first, and then apply the resulting formulae to our
question. The eye first views the point of interest I = (a,b,c) from the canonical
initial eye position E0 = (0,0,1) and then from a novel eye position E = (d,e,f). The
goal is to find the horizontal and vertical offsets, call them u and v respectively, at
which I appears in the new view, just like I appeared at (1,1) from E0. Since we
know how projection worked with the arrangement we had at E0 (we projected points
onto the xy-plane as per Fig. 1), let’s try to replicate that situation at E. To that
end, it will be quite convenient to define a new coordinate system that accomplishes

4 Chapter 1. Perspective Geometry

this for us and then find u and v in these new coordinates. What will this entail?
Well, we’re going to need some new axes and a new origin.

Definition 1.1. A vector will be given by a point in R3 and has the properties of
direction, equal to the direction from an origin (the implicit global origin O = (0,0,0))
to that point, and length, equal to the distance from an origin to that point.

Definition 1.2. An axis will be given by a vector and is defined to be the line in
R3 containing that vector with positive direction equal to the vector’s direction and
length of a unit equal to the vector’s length.

First, it will be easiest to find the new z axis; call it the z′ axis. Since our eyeball
used to look down the z axis at O, let’s just assume (correctly) that the essential
property of the z axis is that we’re looking along it. Since the eye now looks down
from E at O, it should be clear that the z′ axis should just be E. Next, since we
would like our projective plane to be perpendicular to the view direction, as is the
case at E0 since the z axis is perpendicular to the xy-plane, we must make both the
x′ and y′ axes perpendicular to E. But this constraint alone doesn’t give a unique set
of axes—rather, it gives an entire family of coordinate systems, since the x′y′-plane
is free to rotate, as shown in Fig. 1.1.

Figure 1.1: Spinning the x′y′-plane about the z′ axis.

In order to define the axes uniquely, one more constraint must be provided. In
computer graphics, this is usually done with the y′ axis - we need to determine what
direction we’d like to be ’up’ in the projection. Often times, when one is projecting
a whole image rather than a point, this is determined in some aesthetic way by the
image’s content. In this case, however, we can just define the y′ axis to be the
projection of the original (global) y-axis into the x′y′-plane. This will actually work
for the photos later on as well, since they were all taken without any roll - i.e. with
the x′-axis parallel to the ground (or xz-plane).

1.1. Shifting Perspective 5

Given these constraints, the x′ and y′ axes can be calculated with just two cross
products. Recall that the cross product of two vectors U and V yields a new vector
that is perpendicular to the plane containing U and V and has length equal to the
area of the parallelogram created by U and V . To be precise,

Definition 1.3. For U, V ∈ R3, U × V = (U2V3 − U3V2, U3V1 − U1V3, U1V2 − U2V1).

The key trick in determining these axes is that, by our construction, the y′ axis will
be coplanar with the z′ axis and the y axis for any z′ axis. Because each of the new
axes must be pairwise perpendicular, we know that the x′ axis must be perpendicular
to the y′z′-plane, but since this is the same as the yz′-plane by our trick, the x′ axis
is just the cross product of the y axis and the z′ axis. And now that we know the x′

axis and the z′ axis, the y′ axis must be the cross product of these. Now the lengths
of our axes will not necessarily be normalized (equal to 1) since |E| is not necessarily
1, but not to worry - we will have to normalize everything later anyhow. And of
course we will be keeping the right hand rule in mind since the cross product is not
commutative. After these considerations, we arrive at the following formulae for our
new axes:

x′ = y × E

y′ = x′ × E

z′ = E.

Next, lets find the origin O’ of this new coordinate system. Keeping in mind that we’re
duplicating the situation at E0, O’ should be the intersection of the line containing
E with the plane that is perpendicular to E and contains I. Recall that

Definition 1.4. Given a point P ∈ R3 and a direction vector V ∈ R3, a line L ⊂ R3

along V that contains P may be expressed as L = {P + tV | t ∈ R}.
Definition 1.5. Given a point P ∈ R3 and a direction vector V ∈ R3, a plane P ⊂ R3

perpendicular to V that contains P may be expressed as P = {T ∈ R3 |V ·T−V ·P =
0} where · , the dot product, is defined as

Definition 1.6. For U, V ∈ Rn, U · V =
n∑

i=1
UiVi.

Then the intersection can be calculated by substituting the equation of the line into
the equation of the plane,

E · (E − tE)− E · I = 0

solving for t,

t = 1− E · I
E · E

6 Chapter 1. Perspective Geometry

and substituting t back into the line equation

O′ = E − E

(
1− E · I

E · E
)

= E

(
E · I
E · E

)
.

Now we are in position to find u and v. After making O′ the new origin, (by
translating the only point relevant to the calculation, I, by −O′) u and v are just the
components of I −O′ along the x′ and y′ axes, which can be calculated by

u =
x′ · (I −O′)

|x′| and v =
y′ · (I −O′)

|y′| .

Substituting in equations 1.1 and 1.2 and simplifying yields the final result

u =
af − cd√
d2 + f 2

and v =
b(E · E)− e(E · I)√

(d2 + f 2)(E · E)
.

Well, almost the final result. We haven’t quite replicated the situation at E0 since
there the distance from the eye to the plane containing I was exactly 1 - here, that
distance is E −O′. Therefore, the very last thing we must do is to project I onto the
plane where that distance is 1. This may sound pretty involved, but actually, thanks
to the property of similar triangles in Fig. 1, this just comes to dividing u and v by
|E −O′|, as is usually done when projecting points in this manner. This gives us

u =
af − cd

|E −O′|√d2 + f 2
and v =

b(E · E)− e(E · I)

|E −O′|√(d2 + f 2)(E · E)

and after simplifying,

u =
(af − cd)

√
E · E

|E · E − E · I|√d2 + f 2
and v =

b(E · E)− e(E · I)

|E · E − E · I|√d2 + f 2
.

Now, we can answer our original question: where does (1,1,0) when viewed from

(2,2,2)? Using the formulae above, the newly projected (1,1) appears at
(√

6
8 ,

√
2

8

)
.

Hooray!

1.1.2 The Algebraic Perspective

For this next derivation to unfold smoothly, we must begin with a few standard proofs
from linear algebra that we will need later on. One of the most basic motivations of
the subject is that linear transformations (which are an essential part of perspective
transformations) may be represented as matrix multiplications. It will be helpful to
bear this in mind as we prove the following results for matrices; these properties are
meant to be understood for the corresponding linear transformations as well. This

1.1. Shifting Perspective 7

Figure 1.2: Calculating the transformation of the eye from (0,0,1) to (2,2,2) with
interest point (1,1,0).

correspondence will be straightforward since the matrices we will examine, orthonor-
mal and rotational matrices, are simply a repositioning of the standard coordinate
axes in R3 without any deformation or change in scale. But first, a quick reminder of
some basic algebraic operations that we will employ:

8 Chapter 1. Perspective Geometry

Transpose The transpose of the matrix, MT , is obtained by switching M’s rows and
columns (or flipping M over its diagonal) in the following way: 1

If M =
[

V1

∣∣∣ V2

∣∣∣ · · · ∣∣∣ Vn

]
then MT =

V T

1

V T
2
...

V T
n

 .

An essential property of the transpose is the way that it interacts with matrix
multiplication: (AB)T = BTAT . Which brings us to...

Multiplication Matrices are multiplied by taking dot products of the rows of the
first matrix with the respective columns of the second matrix. A relevant ex-
ample of this process yields the useful identity V T V = V · V for any vector V .
And speaking of identities...

Identity The identity matrix, I, has 1’s down its diagonal and 0’s everywhere else.

Inverse Lastly, the inverse of a matrix, M−1, is uniquely defined by the property
MM−1 = M−1M = I. Only the identity matrix is its own inverse. Fun!

OK, basics out of the way... and we’re off!

Orthonormal Matrices

Orthonormal matrices are orthogonal, meaning that each column vector is pairwise
perpendicular to every other column vector, and normal, meaning that every column
vector has length 1. Recall that the dot product of two vectors is 0 iff those vectors
are perpendicular and that the dot product of a vector with itself is equal to its length
squared. Therefore, more formally,

Definition 1.7. An orthonormal matrix is an n×n matrix Q =
[

V1

∣∣∣ V2

∣∣∣ · · · ∣∣∣ Vn

]
for which Vi · Vj =

{
0 if i &= j
1 if i = j

.

With this definition, we can prove some of the useful properties of these orthonormal
matrices: that the transpose of an orthonormal matrix is its inverse, that the prod-
uct of two orthonormal matrices is orthonormal, and lastly, that the dot product is
invariant over orthonormal transformations.

1In the previous section, vectors were expressed horizontally; for instance I = (a,b,c). In this

section and for the remainder of the text, vectors will be vertical n×1 matrices such as V =

 u
v
w

.

1.1. Shifting Perspective 9

Theorem 1.8. The transpose of an orthonormal matrix is its inverse.

Proof.

QTQ =

V T

1

V T
2
...

V T
n

[

V1

∣∣∣ V2

∣∣∣ · · · ∣∣∣ Vn

]
=

V1 · V1 V1 · V2 · · · V1 · Vn

V2 · V1 V2 · V2 · · · V2 · Vn
...

...
. . .

...
Vn · V1 Vn · V2 · · · Vn · Vn

is both equivalent to QQT by the commutativity of the dot product, and equal to I
by the definition of an orthonormal matrix.

Furthermore, the converse of this theorem should be clear as well—if QTQ = QQT =
I then the columns of Q will be constrained to the precise relationships outlined in
Definition 1.5 by the equivalence of the resulting matrices of dot products to the
identity. Therefore, Q must be orthonormal.

Theorem 1.9. The product of two orthonormal matrices is orthonormal.

Proof. Let Q and R be orthonormal matrices. Then

QR
(
QRT

)
= QRTRQT = QQT = I and

(QR)TQR = RTQTQR = RTR = I,

so by the analysis just above, QR must be orthonormal as well.

Theorem 1.10. The dot product is invariant under orthonormal transformations.

Proof. Let Q be an orthonormal matrix and U,U ′, V, V ′ be vectors such that

QU = U ′ and (1)

QV = V ′. (2)

By (1),

(QU)T = U ′T yields UTQT = U′T, (3)

and then by (2) and (3),

UTQTQV = U ′T V ′ multiplying equals by equals

UT V = U ′T V ′ canceling orthonormal matrices

U · V = U ′ · V ′. by definition of dot product

10 Chapter 1. Perspective Geometry

Rotation Matrices

Since we would like our perspective transformation to be general, enabling us to view
R3 in every possible way, we must consider perspectives from all points and in all
directions. To accomplish this, the only constraint that we will impose on our trans-
formations is that they be distance preserving or ’rigid’ - in other words, that they
shift but do not stretch or deform the space in any way. A basic proof from geometry
establishes that every rigid transformation in R3 is either a rotation, a translation, or
both. We’ll discuss translations shortly, but first, let’s explore rotations.

Definition 1.11. A rotation is a rigid transformation with a fixed point at the origin.

This definition might seem a bit obtuse for a concept so simple as rotation, but it
will inform the properties of rotation which we will need. First though, let’s be sure
that the definition is consistent. So a rigid transformation can either be a rotation or
a translation, and if a point doesn’t move after the transformation, (i.e. a fixed point
exists) then the transformation cannot be a translation, since translations move all
points. Then it can only be a rotation. Phew.

It would also be nice if our definition of rotation described the same phenomenon
that we usually refer to when we speak about rotation. This can be confirmed in the
following way. Spread out the fingers on your left hand and place your right pointer
finger in the middle of your left palm. Then, while keeping your right finger in the
same spot on your left hand (and in space!), move your left hand about. The point of
contact between your right finger and left hand is the fixed point, and the fingertips
of your left hand maintain the same distance relative to each other, so this example
satisfies the definition. What’s more, you will find that you can rotate your left hand
in any way (roll, picth, yaw, or a combination) while satisfying the constraints but
cannot translate your hand, just as required!

Theorem 1.12. Rotations are orthonormal.

Proof. We know that rotations preserve distance between any two points, but because
the origin is fixed, they also preserve length (the distance from a point to the origin).
For an arbitrary rotation R and two arbitrary vectors U and V , these facts can be
formalized as 1

|RU −RV | = |U − V | (1)

and

|RU | = |U |. (2)

Now, for the fun part...

1Traditionally, (in linear algebra) the length of a vector is denoted ||V || rather than |V | and the
dot product (usually the more general inner product) denoted < U, V > rather than U · V , but for
continuity and ease of readership, I’ve chosen to keep the notation consistent.

1.1. Shifting Perspective 11

|RU −RV |2 = |U − V |2 by (1)

|RU |2 − 2(RU ·RV) + |RV |2 = |U |2 − 2(U · V) + |V |2 by def of | | and ·
−2(RU ·RV) = −2(U · V) by (2)

RU ·RV = U · V by simplifying

RTRU · V = U · V by def of · and T(
RTRU − U

) · V = 0 by additivity of ·
RTRU − U = 0 X · V = 0 for all V, X = 0

RTR− I = 0 previous line holds for all U

RTR = I by rearranging

and thus rotations are orthonormal since their transpose is equal to their inverse.

Now that we know that rotations are orthonormal, we can apply the previous the-
orems about orthonormal matrices to them. We’ll be doing just that in the derivation.

Deriving the Transformation

As a refresher, let’s quickly recall the motivation for the geometric derivation, since
this derivation will be analogous. An infinitesimal eyeball with a canonical view and
an interest point in its periphery floated up to some novel view while continuously
looking at the origin; we were curious how the interest point looked from up there.
To figure this out, we defined a new coordinate system that mimicked the canonical
situation for the new view, calculated the position of the interest point in this new
coordinate system, and finally projected the interest point onto a plane that was
unit length away from the new eye. The method here will be analogous: we will
calculate the transformation from the new view into the canonical view, apply this
transformation to the interest point, and then project the interest point in the same
way as before. However, to make the algebra work out nicely, our canonical view here
will have to be a bit different: in this case, the canonical eye E0 will sit at the origin,
while the projective plane will reside at z = 1, rather than the other way around.
This is depicted in Fig. 1.3.

Now, to find our transformation. We’re still in the game of trying to recreate the
canonical situation from our novel situation, but with what sort of transformation
would this be accomplished? First of all, (since it’s easy) we should put the eye at
the origin, recreating the canonical situation as usual. For this, all we have to do
is to translate all of the points relevant to our computation by −E. Next, another
transformation should align the new view direction with the canonical one. Well,
since we already went through the trouble of putting the eye at the origin, let’s
have this transformation fix the origin. Furthermore, since changing views doesn’t
change the true distance between any points in R3, it should be clear that the type
of transformation that we need is indeed a rotation. Then this rotation R must

12 Chapter 1. Perspective Geometry

Figure 1.3: Blinn’s canonical perspective view.

first align our (now normalized) view direction, call it V̂ 1, with the canonical view
direction, the z-axis. Furthermore, it must also align some global ’up’ vector, call it
Û , with the canonical ’up’, which we will define to be a vector with no x-component.
Formally, these relationships can be expressed as

RV̂ =

 0
0
1

 and RÛ =

 0
g
h

 respectively,

but, as is usually the case, a picture is worth a thousand words—Fig. 1.4 should help
to illuminate what R is doing for us.

And here’s where our proofs pay off—we can actually find R with just these two
equations. Since we know that R is a rotation, we also know that it is orthonormal.
Therefore, it follows from Thm. 1.10 that

V̂ · Û =

 0
0
1

 ·
 0

g
h

 = h.

And since Û is unit length by definition, it must be the case that g =
√

1− h2. So
we’ve got g and h. Now rearranging by Thm. 1.8, we obtain

V̂ = RT

 0
0
1

 and Û = RT

 0
g
h

 ,

1In general, X̂ will denote a normal (unit length) vector with direction X. In this case, X̂ = − E
|E| .

1.1. Shifting Perspective 13

Figure 1.4: R acting on vectors T̂ and Û .

and solving for RT
3 and RT

2 , we obtain,

RT
3 = V̂

RT
2 =

1

g
Û − h

g
V̂ .

Lastly, we can find the first column of RT , RT
1 , simply by the definition of orthonormal-

ity: every column is perpendicular to every other column. Therefore, RT
1 = RT

2 ×RT
3

and since V̂ × V̂ = 0, we obtain

RT
1 =

1

g

(
Û × V̂

)
.

Thus, in summary, our rotation matrix will be

R =

1
g

(
Û × V̂

)T

1
g

(
Û − hV̂

)T

V̂ T

 .

14 Chapter 1. Perspective Geometry

Checking Ourselves

As was previously mentioned, to transform a given point of interest, we’ll just trans-
late it by −E, multiply it on the left by R and then divide out the z coordinate to
project it into the image plane. As in the geometric derivation, the points we’ll be
working with will be labeled and defined as

I =

 a
b
c

 , E =

 d
e
f

 , Û =

 0
1
0

 , and V̂ = − E

|E| .

It will be easiest to carry out this calculation in two steps. In the first step we’ll
translate and rotate I; we’ll project it second. Translating and rotating I by −E
and R will yield another point in R3—the new but unprojected interest point. Let’s
find each of the three coordinates of this point separately to preserve as much clarity
as possible. Though it is relatively unenlightening, the careful reader might wish to
carry out the simplifications explicitly. For the first component we have

1

g

(
Û × V̂

)
· (I − E) =

1

g

(
Û × V̂

)
· I

=
−Û × E

|Û × E| · I

=

(
1√

d2 + f 2

) −f
0
d

 ·
 a

b
c

=

cd− af√
d2 + f 2

.

For the second component,

1

g

(
Û − hV̂

)T · (I − E) =
1

g

(
Û − hV̂

)T · I

=
(E · E)Û − (E · Û)E√

(d2 + f 2)(E · E)
· I

=

(
1√

(d2 + f 2)(E · E)

) −de
d2 + f 2

−ef

 ·
 a

b
c

=

b(d2 + f 2)− e(ad + cf)√
(d2 + f 2)(E · E)

=
b(E · E)− e(E · I)√

(d2 + f 2)(E · E)
.

And for the third,

V̂ · (I − E) =
−E

|E| · (I − E) =
E · E − E · I√

E · E .

1.1. Shifting Perspective 15

Hopefully, this is beginning to look a bit familiar. These are, in fact, the same
equations that we obtained for the coordinates of the unprojected interest point using
the geometric method. Dividing by the third coordinate will project this point in the
same way as the previous method, and we do end up with the exact same solution.
We did it!

So now that our derivations check out, we can move on to exploring the relation-
ships created by multiple views, rather than just one. But before we do, a quick and
happy caveat. The setup for this latter method does have one advantage over the
previous geometric one: it facilitates an important and straightforward generalization
of our problem. Careful readers may have noticed that in both derivations, our in-
finitesimal eye always looked directly at the origin. Wouldn’t it be nice if, in addition
to being able to move anywhere in R3 and calculate the correct view, our eye could
look in any direction too? Well, here’s how it can. Rather than taking V̂ to be just
− E

|E| , we can also specify a ’non-original’ view direction with V̂ , as shown in Fig. 1.5.

As you can see, this modification of V̂ alters our rotation matrix R in just the right
way to account for looking in arbitrary directions—not just at the origin.

Figure 1.5: A modified R where the eye looks from E to A, and the view V̂ = E−A
|E−A| .

16 Chapter 1. Perspective Geometry

1.2 Relative Perspectives

In the previous section, we derived a method for calculating where an interest point
appears, given some eyeball’s location and view direction in R3. Essentially, we trans-
lated the point relative to the eye’s location, rotated it to align it with the eye’s view
direction. Next, we will find a method to solve the reverse problem: given two different
views of the same point in R3, we’ll determine the transformation (i.e. the translation
and rotation) between them. In order to accomplish this, we’ll need to first review a
bit more linear algebra, derive a few key equations from epipolar geometry, and use
these equations to construct numerical algorithms to approximate our answer. Here,
three algorithms will be considered: first, calculating the transformation between two
views (known as the fundamental matrix) from known point pairs in distinct images,
second, separating the implicit rotation and translation transformations embedded
in the fundamental matrix, and lastly, determining the actual 3D locations of these
interest points.

1.2.1 Eigenstuff, Symmetry, and the SVD

Much of numerical linear algebra is dedicated to ’decomposing’ different types of
matrices in different ways—many matrices have properties which allow them to be
broken up into a product of other matrices that are easier to understand or manipu-
late. Perhaps the most basic example of this is the process of diagonalization. Given
an n× n matrix M that meets certain conditions which we will review momentarily,
we can write M as a product of an invertible matrix, a diagonal matrix, and the
inverse of the first matrix: M = QDQ−1. Before getting into the gritty details, recall
the useful property that results from decomposing a matrix in this manner. Naive
matrix multiplication takes Θ(n3) time1 time (or perhaps, one day, Θ(n2) time to the
most starry eyed researchers) for an n × n matrix. Therefore, if we needed to find
the power p of a matrix the straightforward method would take Θ(pn3) time. But if
we could diagonalize that matrix before computing its power, the calculation could
be simplified as follows:

Mp =
(
QDQ−1

)p

=
(
QDQ−1

) (
QDQ−1

) · · · (QDQ−1
)

(p times)

= (QD)
(
Q−1Q

)
D · · ·D (

Q−1Q
) (

DQ−1
)

= (QD) (I)D · · ·D (I)
(
DQ−1

)
=

(
QDpQ−1

)
.

Because taking the power of a diagonal matrix only requires O(pn) time (since each
diagonal entry only multiplies itself) and the multiplications by Q and Q−1 require
only constant time, we’ve successfully progressed from a cubic time algorithm to a
linear time algorithm—pretty impressive. But there’s no such thing as a free lunch,
and here comes the fine print.

1Please see section 2.4.2 for the definition of Θ- notation.

1.2. Relative Perspectives 17

The Eigenstuff

Not every matrix is diagonalizable. There are two conditions that our matrix must
meet for this decomposition to work—its characteristic polynomial must split and the
dimension of each eigenspace must equal the multiplicity of its associated eigenvalue.
Wow, that’s a lot to unravel. Let’s start with some definitions and then try to put
them together.

Definition 1.13. A non-zero n× 1 vector V is an eigenvector of an n× n matrix M
whenever MV = λV for some scalar λ ∈ R. λ is called the eigenvalue of M associated
with the eigenvector V .

Definition 1.14. The characteristic polynomial of a matrix M is given by the ex-
pression χM (t) = det(M− tI), where ’det’ denotes the determinant of a matrix.

To begin to get a sense (or recollection) of these constructions, let’s prove a quick but
essential theorem.

Theorem 1.15. An eigenvalue λ of a matrix M is a root of χM, i.e. χM(λ) = 0.

Proof. Since λ is an eigenvalue of M, there is some eigenvector V of M such that
MV = λV . Then by the following derivation,

MV = λV

MV = λIV

MV − λIV = 0

(M− λI)V = 0

(M−λI) must not be invertible, or else we could multiply by its inverse on both sides of
the final equation above, and V would be the trivial zero vector, in contradiction with
the definition of an eigenvector. To ensure that (M−λI) is not invertible, we require
that its determinant be zero, giving us the constraint on λ that det(M − λI) = 0.
And so, we must have χM (λ) = 0, as required.

Now we are in a position to explain the first condition of diagonalizability. The
notion of a polynomial ’splitting’ is simply that it can be factored (split) into linear
terms with real coefficients, which in turn means that the polynomial’s roots are real
numbers. For example, x2− 1 splits because it factors into (x + 1)(x− 1), but x2 + 1
doesn’t split because there are no factorizations over the real numbers, and therefore
its roots are complex.1 Since our eigenvalues (and consequently our eigenvectors
as well) will only be real numbers, we must be concerned that our characteristic
polynomials split over the reals.

1If we allowed our eigenvalues to range over the complex numbers, then every characteristic
polynomial would split, but then we would obtain complex solutions for some problems a bit further
down the road for which we truly need real valued solutions.

18 Chapter 1. Perspective Geometry

Before we get to the second condition for diagonalizability, it will be quite helpful
to prove one further theorem regarding the diagonal decomposition itself.

Theorem 1.16. For the diagonalization of a matrix M = QDQ−1, each column of
Q, Qi for some index i, is an eigenvector of M, and each diagonal element in D, dii,
is the eigenvalue associated with that eigenvector Qi.

Proof. Let all eigenvalue/eigenvector equations of the form MV = λV be indexed to
obtain MVi = λiVi where i ranges over all of the eigenvalue/eigenvector pairs for M.
By the structure of matrix multiplication, we can express all of these relationships at
once by making the eigenvectors columns of a single matrix in the following way:

M
[

V1

∣∣∣ V2

∣∣∣ · · · ∣∣∣ Vn

]
=

[
λ1V1

∣∣∣ λ2V2

∣∣∣ · · · ∣∣∣ λnVn

]

=
[

V1

∣∣∣ V2

∣∣∣ · · · ∣∣∣ Vn

]
λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn

 .

After rewriting the above equation as matrices, MQ = QD, it should be clear that
so long as we assume that Q is invertible, we are able to obtain the desired result,
M = QDQ−1, where Q is the column matrix of M’s eigenvectors and D is the
diagonal matrix of M’s eigenvalues.

And now for the second criterion of diagonalizability, that the dimension of the
eigenspace be the multiplicity of the associated eigenvalue. Happily, one can see the
necessity for this fact in the above theorem without really having to define bases, null
spaces, span, or even eigenspaces at all. Basically, this criterion requires that if there is
some number of equal eigenvalues in D, that there be just as many distinct associated
eigenvectors in Q. Suppose for a moment that we were to use the same eigenvector in
Q for some of the repeated eigenvalues in D. Then Q would no longer be invertible
(recall that invertible matrices may not have a column which can be obtained by a
scalar multiplication of another column) and our theorem wouldn’t work. Therefore,
if we obtain repeated eigenvalues as roots of our characteristic polynomial, we must
find a distinct eigenvector for each repetition of that eigenvalue.

Symmetry and Skew

In order to get more familiar with this notion of diagonalization, and because we’re
going to need the results later, let’s diagonalize two types of matrices as examples
(both of which will be denoted S, for clarity). We’ll look at real symmetric matrices,
with the property that S = ST , and real skew-symmetric matrices, for which −S =
ST , and show that both types are actually diagonalized by orthonormal matrices
(which will be quite handy a bit later). Let’s begin with the symmetric case. The
usual route by which symmetric matrices are diagonalized is with another variety of
decomposition known as Schur’s Theorem, and here it is.

1.2. Relative Perspectives 19

Theorem 1.17. A square matrix with a characteristic polynomial that splits may be
decomposed into a product of the matrices M = RURT , where R is orthonormal and
U is upper triangular.

Proof. First, recall that an upper triangular matrix is a square matrix with the prop-
erty that every element below the diagonal must be zero. Ok, now we’re going to
have to proceed by induction, so hang on to your hats. As per usual, the base case
is trivial. Let M be an arbitrary 1 × 1 matrix [m]. Then [m] = [1][m][1] where [1]
is orthonormal and [m] is technically upper triangular, so the theorem holds for all
1× 1 matrices.

Now for the inductive case. Let M be an n × n matrix where χM splits. This
condition guarantees that there is at least one eigenvector of M; calling it V , we know
that it satisfies the equation MV = λV V . Without loss of generality, assume that
V is normal, and let R be an orthonormal matrix with V as its left-most column.
Consider

RTMR =

λV · · ·
0
...

[
RTMR

]
n−1

0

 .

First, let’s show that χ[RT MR]n−1
splits, and then we can use our inductive hypothesis.

χM = det(M− λI)

= det
(
RT

)
det(M− λI) det(R) det

(
RT

)
= det (R) = 1

= det
(
RT (M− λI)R

)
det (AB) = det (A) det (B)

= det
(
RTMR− λI

)
distributing and canceling

= (λV − λ) det
([

RTMR
]
n−1

− λI
)

expanding the determinant

= (λV − λ) χ[RT MR]n−1
.

Hopefully it is clear that χ[RT MR]n−1
splits whenever χM splits, which was one of our

assumptions. And now we can use our inductive hypothesis—that the theorem holds
for all matrices of size (n− 1)× (n− 1). Then for some (n− 1)× (n− 1) orthonormal
matrix P and upper triangular matrix U, PT

[
RTMR

]
n−1

P = U. Define P+ to be
the n× n matrix

1 0 · · · 0
0
... P
0

 , and lastly, consider P+TRTMRP+ =

λ · · ·
0
... U
0

 .

Since P+ is orthonormal, M is similar to the final upper triangular matrix above by
an orthonormal matrix, RP+, as required.

20 Chapter 1. Perspective Geometry

Hmmm, if we could show that the characteristic polynomials of symmetric ma-
trices split, then we could probably apply Schur’s Theorem to get diagonal matrices
out of them... shall we begin?

Theorem 1.18. A real symmetric matrix S may be diagonalized as RDRT where R
is orthonormal.

Proof. First, to show that χS splits. Let x̄ denote the complex conjugate of x. Then
all eigenvalues of S must be real since

SV = λV eigenvalue equation

S̄V̄ = λ̄V̄ taking complex conjugates

SV̄ = λ̄V̄ S is real

(SV̄)T = (λ̄V̄)T taking transposes

V̄ TS = λ̄V̄ T S is symmetric

V̄ TSV = λ̄V̄ T V multiplying by V

λV̄ T V = λ̄V̄ T V SV = λV

λ = λ̄ canceling V̄ T V

Thus, χS must split since all eigenvalues of S are real. And now, since the condition
for Schur’s theorem is satisfied for symmetric matrices, we can apply it in the following
sneaky way:

S = ST by definition of symmetry

RURT =
(
RURT

)T
by Schur

RURT = RUTRT transposing the right side

U = UT canceling R and RT

Since U is equal to its own transpose, it must be symmetric, but since it is also upper
triangular, only diagonal elements may be non-zero. Therefore S = RURT where U
is actually diagonal and R is orthonormal, as required.

So, we’ve successfully diagonalized a symmetric matrix. Cool! But for the next
example, a skew-symmetric matrix, this same set of tricks won’t work. This can be
seen by running through the proof that symmetric matrices have all real eigenvalues,
but using skew-symmetric matrices instead. The last line will be λ = −λ̄ rather than
λ = λ̄. This reveals that the eigenvalues of skew-symmetric matrices are either purely
imaginary or zero; we can’t use Schur’s Theorem to diagonalize these guys. What’s
more, when we do diagonalize these matrices, we’re going to get complex eigenvectors
to pair with the complex eigenvalues when we really need everything to be real. Jeez,
this is starting to sound too complex. Maybe we’ll just try 3 × 3 matrices first, and
see how that goes.

For a real skew-symmetric matrix, we know that there will be at least one non-zero
eigenvalue, (assuming, as usual, that we’re working with a non-zero matrix) and we

1.2. Relative Perspectives 21

know that eigenvalue will be purely imaginary. But if we restrict ourselves to the 3×3
matrices, we can calculate the eigenvalues explicitly. A skew-symmetric 3×3 matrix S

has the form

 0 a b
−a 0 c
−b −c 0

, and thus χS(λ) = 0 reduces to −λ3 = λ (a2 + b2 + c2),

meaning that the eigenvalues are precisely 0 and ±i
√

a2 + b2 + c2. And now that we
know the eigenvalues, we can actually diagonalize the matrix, bringing us much of
the way toward a useful decomposition of this type of matrix.

Theorem 1.19. A 3× 3 skew-symmetric matrix S may be diagonalized as λRDRT ,

where λ ∈ R, R is orthonormal, and D =

 i 0 0
0 −i 0
0 0 0

.

Proof. First, let’s check that S meets the criteria for diagonalizability. It’s character-
istic polynomial clearly splits since we’re working over the complex numbers, so that’s
fine. And we know by the previous discussion that S has three distinct eigenvalues, so
we don’t have to worry about finding different eigenvectors for repetitions of the same
eigenvalue. Great! We also know from the previous discussion that S diagonalizes
to the matrix described in the theorem since we actually found its eigenvalues, and
that λ ∈ R because a, b, and c are real. Then all that remains is to show that R is
orthonormal. To that end, let SV1 = λ1V1 and SV2 = λ2V2, where λ1 &= λ2. Then

V T
1 ST = λ1V

T
1 taking transposes

V T
1 ST V2 = λ1V

T
1 V2 multiplying by V2

−V T
1 SV2 = λ1V

T
1 V2 S is skew-symmetric

−V T
1 λ2V2 = λ1V

T
1 V2 SV2 = λ2V2

λ2V
T
1 V2 = λ1V

T
1 V2

remembering that

U · V =
n∑

i=1
uiv̄i over Cn

V T
1 V2 = 0 λ1 &= λ2

and so V1 and V2 are orthogonal since their dot product is zero. Moreover, they can
be normalized since eigenvectors are only constrained up to scalar multiplication.

So we’ve diagonalized our skew-symmetric matrix into a pretty nice situation,
where the diagonal matrix is flanked by orthonormal matrices, just like the symmet-
ric version. But don’t forget that we need the eigenvalues and eigenvectors to be real
valued, and they are still very much complex. What can we do now? Well, we can
always ask our magical crystal ball (the internet)1 to give us the answer. And it says,

1A complete treatment of the diagonalization of skew-symmetric matrices can apparently be
found in ??, according to ?? on p. 581, if the reader is proficient enough to find exactly where in
?? this proof is located.

22 Chapter 1. Perspective Geometry

”Diagonalize the matrix D̃ =

 0 1 0
−1 0 0
0 0 0

 and the truth shall be revealed.”

Alright, let’s give it a shot. By the discussion prior to the thoerem, the eigenvalues
of this matrix D̃ are clearly i, −i, and 0. The eigenvectors are going to take a bit
more work, however. The (non-normalized) matrix of eigenvectors of our general
skew-symmetric matrix, R, can be computed by

R =

 bc− ia
√

a2 + b2 + c2 bc− ia
√

a2 + b2 + c2 c
a2 + c2 a2 + c2 −b

ab− ic
√

a2 + b2 + c2 ab− ic
√

a2 + b2 + c2 a

 .

So in our specific case where a = 1 and b = c = 0, we obtain the (non-normalized)
diagonalization of our magical matrix,

D̃ = R̃DR̃∗ =

 −i i 0
1 1 0
0 0 0

 i 0 0
0 −i 0
0 0 0

 i 1 0
−i 1 0
0 0 0

 ,

where ∗, the conjugate transpose of a matrix, is just the complex version of the usual
transpose for real matrices.

So, can you see the trick? If we flip around the last equation, we can get D =
R̃∗D̃R̃, and if we substitute this into the original diagonalization of the general skew-
symmetric matrix, we obtain S = RR̃∗D̃R̃RT , where the almost diagonal matrix D̃
is real instead of complex. If only RR̃∗ was real valued too... which it is! The more
compulsive readers are encouraged to double-check this result, and there we have it.
Now that we have diagonalized two difficult and general matrices, we are ready for the
last section of linear algebra—in a sense, the final and best type of diagonalization.

Singular Value Decomposition

Although it’s great for computations when we can diagonalize a matrix, at times
it is the case that we are unable to do so, as was intimated by our skew-symmetric
example. But sometimes we can’t even come close—some matrices have no eigenvalues
at all, and diagonalization isn’t even defined for matrices that aren’t square. We need
an alternative in these cases, and singular value decomposition is often the answer.
This type of decomposition can be used on any matrix whatsoever, and even uses
orthonormal matrices to decompose them. Ok, enough hype; let’s see it already.

Theorem 1.20. A real m × n matrix A (where, without loss of generality, m ≥ n)
may be decomposed as UΣVT where U and V are orthonormal, σ1 ≥ σ2 ≥ · · · ≥
σn ≥ 0 ∈ R, and

Σ =

σ1 0 · · · 0
0 σ2 0
...

. . .
...

0 0 · · · σn

0

 .

1.2. Relative Perspectives 23

Proof. Since A is so general, we will begin by considering the nicer matrices AAT

and ATA, which are square (m ×m and n × n, respectively) and symmetric. Then
we know by our previous work that ATAVi = λiVi in the usual way. But from here,
AATAVi = λiAVi, so AV i is actually an eigenvector of AAT . Moreover,

|AVi|2 = (AVi)
T (AVi) = V T

i ATAVi = V T
i λiVi = λi,

so let σi =
√

λi = |AVi| and define Ui to be the normal vector AVi
σi . Now, consider

UT
i AVj =

(
AVi

σi

)T

AVj =
V T

i ATAVj

σi
=

λj

σi
V T

i Vj,

which is zero when i &= j, and σi when i = j, since V is orthonormal. We can then
combine all of these equations into matrix form to obtain

UT
1

UT
2
...

UT
n

A
[

V1

∣∣∣ V2

∣∣∣ · · · ∣∣∣ Vn

]
=

σ1 0 · · · 0
0 σ2 0
...

. . .
...

0 0 · · · σn

 .

We must make one final adjustment to this equation in order to complete the proof.
Since the number of eigenvectors of ATA and AAT is equal, there must be exactly n
of them—equal to the smaller of A’s dimensions. Hence, the matrix of eigenvectors
corresponding to the larger dimension of A, the eigenvector matrix of AAT , is not
square; it contains only n eigenvectors, not m. Fortunately, this problem is easily
resolved. We can just pick m− n more vectors perpendicular to the vectors already
in U, and put them at the bottom of the matrix. This will result in the the extra
rows of zeros at the bottom of Σ seen in the theorem statement, but now both U
and V are orthonormal, and by shifting them to the other side of the equation, the
theorem is proved.

Before delving into the geometric prerequisites for our view-finding algorithms,
let’s have a sneak preview of how we’re going to apply the SVD; it turns out that
the SVD will give the best approximate solution to a homogeneous system of linear
equations. More formally, given a matrix A, our goal is to find the vector X that
minimizes the vector |AX|. Clearly the zero vector would accomplish this, but as
usual, we will be interested only in non-trivial solutions, so we will also impose the
constraint that |X| = 1. Now let’s sit back and let the SVD do the work for us. We
get

|AX| = |UΣVT X| = |ΣVT X|
by the SVD and since |U| = 1. Then instead of minimizing |AX| where |X| = 1,
we can minimize |ΣVT X| where |VT X| = 1. It is easy to see by the structure of Σ,
since the singular values (σi) decrease down the diagonal, that the minimizing vector

VT X =

0
0
...
1

 and so X = V

0
0
...
1

 .

24 Chapter 1. Perspective Geometry

So the vector that minimizes |AX| is simply the last column of V , the eigenvector
corresponding to the smallest eigenvalue of ATA. We will make use of this key result
soon, but first let’s have a short break from the algebra with pretty pictures and some
geometry.

1.2.2 Epipolar Geometry

Figure 1.6: The basic relationships of epipolar geometry.

The primary function of interest in epipolar geometry, the fundamental matrix,
represents the relationship between projected points seen from one view to the same
projected points seen from a different view. However, the mapping is a bit different
from the sorts of functions that we are used to seeing, since it does not relate points
with points, but rather, points with lines. More precisely, given two views from
cameras C and C′ with the projection of an interest point X from C being P , the
projection of X from C′, call it P ′, is constrained to lie on the projection of the line
←→
CX from C′. This line can be computed from P with a 3 × 3 matrix F called the
fundamental matrix. In order to work out exactly what this equation entails, we’re
going to have to come up with some rather unique definitions for cameras and for
lines, but rest assured, it will all work out in the end.

The Matrices of Cameras and Lines

Definition 1.21. A camera may be understood as a view direction and a location,
and will be represented as a 3× 4 matrix C = [R |C], where R is the camera’s view
(a rotation from the canonical z-axis) and C is the camera’s location (a translation
from the origin).

Recall that both of our calculations of novel views of interest points in R3 had
three steps. First we translated the interest point, then we rotated it, then projected

1.2. Relative Perspectives 25

it. What this representation of camera matrices is doing for us is essentially just com-
bining the first two steps. See, if we represent interest points I in R3 as ’homogeneous’
four dimensional points of the form

a
b
c
1

 instead of the usual

 a
b
c

 ,

then when we multiply by a camera matrix of the aforementioned form we obtain

CI = [R |C]

a
b
c
1

 = R

 a
b
c

 + C;

the same result as the first two steps of our other two view calculation methods, but
combined into a single matrix multiplication. The only catch is that from now on,
we’ll have to represent points in R3 as these homogenous four dimensional points
with a 1 as the final entry. Similarly, projected points will now be homogenous three
dimensional points with 1 as the final entry, but this is essentially what we’ve been
doing already. When we projected points, we divided out by the third coordinate and
concerned ourselves only with the first two. Now, we’ll do exactly the same thing, but
leave a 1 in the third coordinate as a place holder for further matrix multiplications,
in case we need it. And that’s it!

Our representation of lines is going to be just a tad more involved. Here, we’ll
only be concerned with lines in R2, since the lines we’ll be working with will all reside
in camera projections of R3, not in the full space. The definition will be a good place
to start.

Definition 1.22. A line in R2 may be written in standard form as ax + by + c = 0.

We’ll condense this information into a 3× 1 matrix of the form L =

 a
b
c

.

With this particular representation of lines, employing the usual matrix opera-
tions (the dot product and cross product) yield quite useful and perhaps unexpected
information regarding the relationships between these lines and homogeneous points
in R2. Let’s take a moment to explore, shall we?

Theorem 1.23. A homogenous point P lies on a line L iff P · L = 0.

Proof. Let P =

 p
q
r

 and L =

 a
b
c

. Then

P ∈ L iff a
p

r
+ b

q

r
+ c = 0

iff px + qy = −rz

iff P · L = 0.

26 Chapter 1. Perspective Geometry

Theorem 1.24. The line defined by two non-zero homogeneous points is equal to the
cross product of those points. Furthermore, the homogeneous point at the intersection
of two lines is equal to the cross product of those lines.

Proof. For a line defined by two points, let the line L contain the two points P and
Q. Then by the previous theorem, L · P = 0 and L · Q = 0. We know by the
usual properties of dot products that two vectors1 have a dot product of 0 iff they
are perpendicular or one of the vectors is zero. We assume that neither point is
zero, so L is perpendicular to P and Q. There are only two vectors in R3 that are
perpendicular to both P and Q: P × Q and −P × Q. Fortunately, it is easy to see
by the definition of a line that L = −L, so our line through P and Q is well-defined
and the first part of the theorem is proved. The proof of the second part is almost
exactly the same as the first, and is left to the reader.

Epipolar Lines and the Fundamental Matrix

Now, to make use of our new notions of cameras and lines, let’s figure out what’s
depicted in Fig. 1.6. First of all, it should be clear that the cameras C and C′

are projecting the interest point X onto the points P and P ′, respectively. But the
cameras are also projecting each other: C projects C ′ onto E and C′ projects C onto
E ′. The projected point of a camera center by another camera called an epipole, and
any line in a camera’s projective plane that passes through an epipole is called an
epipolar line. Hence, L and L′, which are defined to be E×P and E ′×P ′ as per the
previous theorem, are epipolar lines.

The nice thing about epipolar lines is that they describe the relationship between
different projections of the same interest point—no easy task. The problem with
projection is that it is not bijective; in Fig. 1.6, C projects every point on the line
←→
CX to P , not just X. To put it differently, the inverse of the projection induced by
the camera C—call it the ’unprojection,’ or, more formally, C†P—is not well-defined

because it doesn’t yield the point X, but rather, an arbitrary point on the line
←→
CX.

This presents a problem because we’re going to need to be able to find C′ given C,

P , and P ′, but we can’t do it without knowing exactly where X lies on
←→
CX. The

only thing that we know is that since X must be somewhere on
←→
CX, P ′ lies on the

projection of
←→
CX, also known as the epipolar line L′.

That last part is the key, so let’s restate and formalize it. Obviously X lies on the

line
←→
CX, which could also be defined as the line joining the camera center C and the

unprojection of P by C, C†P . If we were to project those two points by the camera

1One great part about these homogenous representations is that we can switch willy-nilly between
them and the usual non-homogeneous vectors that we mean when we write arrays of numbers like
this; then we can apply all of the usual properties of vectors to the lines and homogeneous points as
we see fit since the computational properties of an array of numbers remains the same, no matter
what it represents.

1.2. Relative Perspectives 27

C′, we would obtain the points C′C and C′C†P . Now, by the previous theorem,
the line between these two projected points is C′C × C′C†P , which is clearly the

projection of the line
←→
CX by the camera C′ and is also the epipolar line L′. And

here we arrive at the desired formulation, a fundamental relationship between camera
matrices:

L′ = FP , where F = C′C ×C′C† is known as the fundamental matrix.

By Thm. ??, we have another formulation for the fundamental matrix as well,

L′ = FP implies P ′T FP = 0.

We’ll use both of these relationships in the upcoming algorithms, but first, let’s do
a simple example to get a sense of how they work and for the homogeneous points
upon which they operate.

We’ll use the formula F = C′C ×C′C† on the simplest conceivable situation and
see what we get for F . Let C = [I | 0], the canonical situation a la Blinn, and let the
other camera be arbitrary, i.e. C′ = [R | t]. Then

F = [R | t]

0
0
0
1

× [R | t]

[
I
0

]

= t×R.

Now there is a bit of an issue here since we’ve only defined the cross product between
two vectors, not between a vector and a matrix. But it turns out that we can define
the cross product in a more general way that encompasses both situations. From

here on, for any 3× 1 matrix A =

 a
b
c

, let A×B refer to the product of the skew

matrix SA =

 0 a b
−a 0 c
−b −c 0

 with B, i.e. A × B = SAB. One may check that this

definition preserves the usual behavior of the cross product, and hopefully this will
resolve any issues the reader may have with our little abuse of notation. And now, at
long last, we come to the three algorithms that we’ll use to find the relative positions
of different views of the same scene.

1.2.3 Computing F and X from Point Pairs

The Normalized 7-Point Algorithm

normalization: why and how
non-point constraints: why det(F)=0 and —F—=1
7pt alg
cubic solution lottery

28 Chapter 1. Perspective Geometry

The Essential Decomposition

mention KT FK = E
svd to find R and t from E p. 258; points in front of camera? p. 162

Triangulation

derive X’s from x,x’,E using optimal method (p.315)

Figure 1.7: Finding proper epipolar relationships in a model with error.

